Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells.
نویسندگان
چکیده
Galectin-1 is a beta-galactoside-binding lectin. Previous studies have shown that galectin-1 was expressed in fibroblasts of chronic pancreatitis and of desmoplastic reaction associated with pancreatic cancer. These fibroblasts are now recognized as activated pancreatic stellate cells (PSCs). Here, we examined the role of galectin-1 in cell functions of PSCs. PSCs were isolated from rat pancreatic tissue and used in their culture-activated phenotype unless otherwise stated. Expression of galectin-1 was assessed by Western blot analysis, RT-PCR, and immunofluorescent staining. The effects of recombinant galectin-1 on chemokine production and proliferation were evaluated. Activation of transcription factors was assessed by EMSA. Activation of MAPKs was examined by Western blot analysis using anti-phosphospecific antibodies. Galectin-1 was strongly expressed in culture-activated but not freshly isolated PSCs. Recombinant galectin-1 increased proliferation and production of monocyte chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant-1. Galectin-1 activated ERK, JNK, activator protein-1, and NF-kappaB, but not p38 MAPK or Akt. Galectin-1 induced proliferation through ERK and chemokine production mainly through the activation of NF-kappaB and in part by JNK and ERK pathways. These effects of galectin-1 were abolished in the presence of thiodigalactosie, an inhibitor of beta-galactoside binding. In conclusion, our results suggest a role of galectin-1 in chemokine production and proliferation through its beta-galactoside binding activity in activated PSCs.
منابع مشابه
PSC-derived Galectin-1 inducing epithelial-mesenchymal transition of pancreatic ductal adenocarcinoma cells by activating the NF-κB pathway
Galectin-1 has previously been shown to be strongly expressed in activated pancreatic stellate cells (PSCs) and promote the development and metastasis of pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms by which Galectin-1 promotes the malignant behavior of pancreatic cancer cells remain unclear. In this study, we examined the effects of Galectin-1 knockdown or overexp...
متن کاملChronic Hyperglycemia Induces Trans-Differentiation of Human Pancreatic Stellate Cells and Enhances the Malignant Molecular Communication with Human Pancreatic Cancer Cells
BACKGROUND Diabetes mellitus is linked to pancreatic cancer. We hypothesized a role for pancreatic stellate cells (PSC) in the hyperglycemia induced deterioration of pancreatic cancer and therefore studied two human cell lines (RLT-PSC, T3M4) in hyperglycemic environment. METHODOLOGY/PRINCIPAL FINDINGS The effect of chronic hyperglycemia (CHG) on PSCs was studied using mRNA expression array w...
متن کاملA c-Jun NH2-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazole-6 (2H)-one) blocks activation of pancreatic stellate cells.
In response to pancreatic injury and in cell culture, pancreatic stellate cells (PSCs) are transformed ("activated") into highly proliferative myofibroblast-like cells that express alpha-smooth muscle actin and produce extracellular matrix components. Activated PSCs are implicated in the pathogenesis of pancreatic fibrosis and inflammation. We here evaluated the effects of SP600125 (anthra[1,9-...
متن کاملJPET#76232 Protease-activated Receptor-2-mediated Proliferation and Collagen Production of Rat Pancreatic Stellate Cells
Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic inflammation and fibrosis. Trypsin and tryptase, which are agonists for protease-activated receptor-2 (PAR-2), are involved in the pathogenesis of pancreatitis. We here examined whether PSCs expressed PAR-2 and its agonists affect the cell functions of PSCs. PSCs were isolated from rat pancreas tiss...
متن کاملProtease-activated receptor-2-mediated proliferation and collagen production of rat pancreatic stellate cells.
Activated pancreatic stellate cells (PSCs) play a pivotal role in the pathogenesis of pancreatic inflammation and fibrosis. Trypsin and tryptase, which are agonists for protease-activated receptor-2 (PAR-2), are involved in the pathogenesis of pancreatitis. Here, we examined whether PSCs expressed PAR-2 and its agonists affect the cell functions of PSCs. PSCs were isolated from rat pancreas tis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 290 4 شماره
صفحات -
تاریخ انتشار 2006